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Abstract: The introduction of 2D materials in recent years has resulted in an emerging type of constructed structure
called van der Waals heterostructures (vdseWHSs) that take advantage of the 2D materials in forming atomically thin
components and devices. The vdWHs are constructed by the stacking of 2D materials by van der Waals interactions
or edge covalent boning. The electron orbitals of the 2D layers in vdWHs extend to each other and influence the
electronic band structures of the constituent layers. The tunable optical response over a wide range of wavelengths
(NIR to visible) can be obtained by assembling vdWHs by combining the monolayers. By application of 2D layers
in vdWHs, p-n heterojunctions without lattice mismatch can be formed. The photodiodes based on the van der Waals
interactions could be considered promising candidates for future optoelectronic devices. Furthermore, on-chip
quantum optoelectronics can move to the next generation by using 2D materials in vdWHs. In this review, the vdWHs
are introduced and their properties and applications in light-emitting diodes (LEDs) have been discussed. The
vdWHSs allow bandgap engineering, and hence, LEDs working in a range of wavelengths can be realized. The
applications of vdWHs in forming atomically thin components in optoelectronic devices and LEDs have been
addressed.
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1. INTRODUCTION

A nanoscale LED is an essential component for
future integrated nanophotonics. There have been
great deals of efforts for realizing efficient,
compact, electrically driven, and scalable light
emitters which could be integrated with electronic
elements in a chip [1]. Several materials including
bulk MI-V compound semiconductors [2], Ge
[3, 4], and low-dimensional nanomaterials like
nanowires [5, 6], quantum dots [7-14], and
quantum wells [15, 16] have been used as the
photonic sources. However, the need for high
efficiency, low integration costs, and modulation
speed require the application of new structures
and materials for this purpose [1].

The research on 2D materials is inspired by
graphene as a single atomic layer of carbon atoms
[17-20]. A surprising number of research works
have been conducted on 2D materials for different
applications in recent years [21-24]. The
properties of the 2D materials differ from those of
their 3D counterparts which gives them the
capability of creating emerging structures with
different characteristics [25]. The 2D layers can
be easily exfoliated from their corresponding
bulk structure due to the weak van der Waals
interactions between the layers. The van der
Waals interactions between the layers in the bulk

structure of 2D materials are in the range of
40-70 meV while the interactions between the
atoms in the layers are covalent [26].

The 2D materials have a characteristic property of
ultrahigh surface sensitivity with two exposed
surfaces. Furthermore, they have a wide range
of properties such as optical, electronic, and
magnetic properties due to their different crystal
structure and chemical composition of the in-
plane covalent crystalline sheets in the layered
bulk materials. These unique properties have been
the basic idea for the application of these
structures as building blocks for the production of
vertically stacked structures that take advantage
of van der Waals interactions that exist between
layers. These kinds of structures are called
vdWHs [27].

The approach for the production of complex
architectures by these building blocks consists of
the following steps: a) creation of various 2D
structures by growth and/or mechanical
exfoliation, b) optimizing of the structural,
chemical, optical, and/or electronic properties
through chemical functionalization, strain
engineering, etc., and c¢) controlled multi-stacking
of the 2D sheets into a 3D structure [28].

The 2D vdWHs have a robust light-matter
interaction due to the following reasons:

a) For most of the 2D layered materials, type II
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band gap alignments can be seen if they are
contacted in an atomically flat interface
[29-31].

b) Elementary 2D layered materials show an
intrinsic direct bandgap or a transition of
indirect-direct bandgap when they are scaled
down to a monolayer [29, 32-34].

¢) The 2D configuration of the vdWHs results in
a high specific surface area [29].

The need for ultrathin optoelectronic devices and

on-chip quantum optoelectronics has led to the

application of vdWHs in novel LEDs. The
bandgap of the vdWHs can be tuned through the
application of a different combination of the 2D
layers, applying strains, and alloying. Therefore,
the bandgap and emission wavelength of the

LEDs can be manipulated by the introduction of

vdWHs. This review aims to cover recent

advances in the field of the application of vdWHs
in novel LEDs for innovation in display
technology.

1.1. 2D Materials Building the Van Der Waals
Heterostructures

The mechanical exfoliation of graphene from
bulk graphite was established by Geim and
Novoselov [35], and after this trial in 2004,
research on the synthesis, applications, and
characterization of 2D materials has developed
with a fast trend. The 2D materials include a
broad category of elements such as graphene [36],
phosphorene [37-39], silicon [40, 41], and
different compounds such as hexagonal boron
nitride  [42-45], non-metal and metal
chalcogenides [46-51], hydroxides [52-57] and
halides [58-61], oxides [62-65], silicates [66-68],
perovskites [69-71], and covalent organic
frameworks [72-75]. Fig. 1 shows layered
materials based on the displayed elements that
were exfoliated in 2D structures as well as the
elements of the periodic table that can form
synthetic elemental 2D materials, and an
overview of recently synthesized and developed
2D structures through the epitaxial growth route.
Still, there exist other crystalline solids from the
periodic table that have different properties and
may have the possibility of the creation of single-
or few-layer polyhedral thick 2D structures [78].
Fig. 2a shows some of the 2D materials and their
corresponding 3D structure counterparts. As an
example, graphene is thermally and electrically
conductive with high electron mobility of 200000

cm?V-'s! and thermal conductivity in the range of
1500 to 3000 Wm'K!. The graphene has a
strength of up to 135 GPa, and its elastic stiffness
reaches 1 TPa. The hexagonal boron nitride
(hBN) is insulating while phosphorene and MoS;
are semiconductors [42]. The vdWH of these 2D
building blocks (Fig 2c-g) can result in exotic
optical, electrical, and optoelectronic properties
with applications in sensing [79], energy
harvesting [80, 81], memory, storage, and
actuating devices [42].

The transition metal dichalcogenides (TMDs)
with the general formula of MX, (with M
referring to a transition metal type from the group
of 4-7 and X denoting a chalcogen including Se,
Te, or S) are a category of the 2D materials with
more than 40 compounds. In the bulk structure of
the layered TMDs, the interactions between the
layers are weak van der Waals type while strong
bondings exist in the layers. Each sheet of a TMD
includes three atomic layers and two chalcogens
atomic layers sandwiching a transition metal
atomic layer between them. Upon isolation of the
TMD monolayers, the interactions in Z-direction
will be removed and confinement of the charge
carriers occurs in only two dimensions (X and Y).
The charge carriers' confinement will result in the
changing of the monolayer properties [82].

The application of vertical heterostructures in
optoelectronic devices has several advantages
including the luminescence obtained from the
whole area of the device, decreased resistance of
the contacts, increased current densities which
result in brighter LEDs, and more extensive
choices of TMDs (and combinations of the
TMDs) that are allowed in designing. This
technology can be used for devices based on
quantum wells such as LEDs based on several
QWs, indirect excitonic devices, and lasers [84].

1.2. Band-Structure in Van Der Waals
Heterostructures

The electronic structure of the solids is described
by the band diagrams that show allowed energy
levels within a solid. According to the energy
level structure, the solids are classified into
three different electronic structures: metals,
semiconductors, and insulators [26].

The interactions in the vdWHSs are weak, but the
electron orbitals of the layers extend to each other
and have an influence on the electronic band
structures of the constituent layers [85-91].
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Fig. 1. (a) Highlighted elements of the periodic table that form the common layered and 2D materials. Reprinted
with permission from ref. [26] 2017 published by Elsevier Ltd. This is an open-access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/). (b) The elements of the periodic table can form synthetic
elemental 2D materials with their corresponding synthesis methods. The elements highlighted in grey are those
that have not been predicted to form 2D materials and nor have experimentally resulted in synthetic elemental

2D materials. Reprinted with permission from ref. [76] Copyright 2017 Macmillan Publishers Limited. c)
Overview of recently synthesized and developed 2D structures through the epitaxial growth route. Reproduced
with permission from ref. [77] Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Graphene has a zero bandgap which has limited
its application in some optoelectronic and
electronic devices. However, TMDs possess a
sizable bandgap. The sizable bandgap in TMDs
has resulted in their applications in electronic
devices [92-96]. The TMDs have unique
properties including bandgap transition from
indirect to direct while being converted to
monolayers [17, 32, 97, 98], intense light-matter
interactions, and considerable exciton binding
energy [17].

The TMDs can be used in vdWHs to improve the
optical and electronic characteristics of the
resultant heterostructure, compared to the 2D
material itself. This benefit could happen as a
result of the interactions that may exist between
the layers. For example, Peng et al. investigated

the optical and electronic characteristics of blue
phosphorene (BlueP)/TMDs vdWHs by the first-
principles calculations based on the density
functional theory (DFT) [99]. Both the BlueP and
TMD monolayers are hexagonal crystals and
hence, can make BlueP/TMDs vdWHs.

The BlueP/TMDs vdWHs (TMDs= WSe;, WS,
MoSe;, and MoS>) show indirect gap. The BlueP
layer in the heterostructure can be used as the
electron acceptor, and WS,, WSe», or MoSe: can
be used as an electron donor. The vdWHs of
BlueP/TMDs show almost an increased optical
absorbance in the visible range of the spectrum.
Except for BlueP/MoS; heterostructure, the band
edge positions of the stacked vdWHs are located
between the conduction band minimum (CBM) of
the BlueP and the valence band maximum (VBM)
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of the TMDs. Compared to the corresponding
TMDs monolayers, the bandgaps of the stacked
heterostructures are smaller. This phenomenon
implies that the formation of the vdWHs results in
a decrease in the bandgap values. There is a shift
in the Fermi level of the BlueP/TMDs vdWHs,
and this level locates between the VBM of TMDs
and the CBM of BlueP.

Furchi et al. showed that the interlayer coupling
of the TMDs vdWHs is negligible and the bands
of the heterostructures are the superposition of the
bands of the monolayers [100]. MoS, and WSe;
monolayers were used in a type-II van der Waals
heterojunction which is electrically tunable. The
photovoltage in a diode depends on the p-n
junction. The van der Waals heterojunction
composed of MoS; and WSe; behaves as a diode
with the photovoltaic effect. By applying a gate
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bias, a thin diode is realized. This device shows
photovoltaic characteristics in which optical
illumination results in charge transfer across the
interface. The MoS, layer possesses the lowest
energy electron states, and the WSe; possesses the
highest energy hole states, which results in a type-
IT heterostructure.

Direct synthesis of the heterostructure layers
through techniques such as CVD, instead of
mechanical stacking, might result in the better
rotational alignment of the layers and hence, the
better coupling between the layers can be
achieved. MoS,;, MoSe;, and WSe, TMDs
monolayers were used with graphene to construct
WSe,-MoS,-graphene and MoS,-WSe;-graphene
heterostructures synthesized by a combination of
oxide powder vaporization and metal-organic
chemical vapor deposition (MOCVD) methods.
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Fig. 2. (a) Schematic of some of the 2D materials and their corresponding 3D structure counterparts. Reprinted
with permission from ref. [42] Copyright 2018 Elsevier Ltd. (b) Examples of 2D structures with metallic to
semiconductor and insulator characteristics; the long arrow shows the direction of increasing bandgap from left
to right. (c-g) VAWHs that have been integrated by 2D layered materials with quantum dots and 0D
nanoparticles (c), 1D nanowires (d), 1.5D nanoribbons (e), 3D materials (f), and 2D nanosheets (g). Reproduced
with permission from ref. [83] Copyright 2016 Macmillan Publishers Limited.
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Through growing two different TMD layers on
multilayer epitaxial graphene (EG, three layers of
graphene) the heterostructure is constructed. The
TMDs multilayers show a direct optical bandgap
(Eopt). The PL spectroscopy in Fig. 3a and Fig.
3b reveals that electronic coupling has occurred
between the layers. The photoluminescence (PL)
spectra of the constructed heterostructures show
that there are interlayer excitons at 1.59 eV for
MoS,—WSe»—EG and 1.36 eV for WSe,—MoSe—
EG. The WSe;-MoSe; and MoS,—WSe; junctions
show type-II band alignment. The holes in MoS;
(MoSe;) valence band are injected into the
valence band of WSe,, and the electrons of the
WSe, conduction band are transferred to the
conduction band of MoS; (MoSe,). The PL peak
position, which is the result of interlayer exciton
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recombination, is the evidence of electronic
coupling at the heterojunctions. The scanning
tunneling spectroscopy (STS) affirms that the
quasi-particle bandgap of MoS,~WSe>-EG
hetero structure is smaller than that of WSe,—-EG
(Fig. 3c and Fig. 3d) [101].

1.3. Bandgap Tuning of Van Der Waals
Heterostructures

All of the single-layer 2D materials are not
suitable for specific applications, concerning their
band structures. For example, graphene misses
having a bandgap, while the bandgap of hBN is
large for specific optical and electronic
applications [102, 103]. The vdWHs can alter the
optical and electronic properties through the
combining of the monolayers.
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Fig. 3. (a) The PL of WSe>-MoSe;-EG and MoS,-WSe»-EG heterostructures show interlayer coupling, (b) WSe;-
MoSe»-EG and MoS,-WSe;-EG show intrinsic PL peaks corresponding to MoSe», MoS,, and WSe; and also show
interband PL peaks. (c) And (d) STS on EG, WSe»-EG, and MoS,-WSe»-EG illustrates that the bandgap of the double
junction heterostructure of MoS,-WSe»-EG is smaller than WSe»-EG heterostructure with a single junction. The
positions of valence band maximum (VBM), conduction band minimum (CBM), and quasi-particle bandgap Eg
are marked on the diagram [101]. Licensed under a Creative Commons Attribution 4.0 International License.

& &



http://dx.doi.org/10.22068/ijmse.3019
https://conf.iust.ac.ir/ijmse/article-1-3019-en.html

[ Downloaded from conf.iust.ac.ir on 2025-11-08 ]

[ DOI: 10.22068/ijmse.3019 ]

Mohammad Jafar Molaei

As an example, the electronic quality of the
hBN/graphene can be increased tenfold compared
to the graphene [104], MoS,—WS; for ultrafast
charge transfer [ 105], WS»/rGO as a catalyst, etc.
The TMDs and their vdWHs can be utilized in
(opto) nanoelectronics and spintronics devices
due to their semiconductor, semimetallic, and
metallic characteristics, spin-polarized transport,
and superconductivity [106-123]. The diverse
range of electron affinities, workfunctions, and
bandgaps makes it possible to design vd WHs with
versatile band alignments [106, 124-135].

The charge properties and electronic band
structures of the TMDs depend on the
coordination environment of transition metal
atoms and the count of the d-electron. The
bandgap of some of the TMDs like Mo and W
dichalcogenide compounds shows a transition
from indirect to direct by exfoliation. The
graphene, however, does not show a bandgap, and
manipulations such as layer stacking or narrowing
of the lateral dimension are needed to open a gap
[136].

In bulk TMDs, the CBM is located near the
midpoint along I'-K path, and VBM is located at
I' point. When the same material becomes a
monolayer, it would possess a direct bandgap, and
the CBM and VBM coincide at K [136]. The first-
principles density functional theory (DFT) can
predict the band structure of the materials [137-
141]. The density functional theory calculation in
Fig. 4a for the ultrathin MoS; layers and bulk
MoS; with different thicknesses showed that the
layer thickness has not a pronounced effect on
changing the direct excitonic transition energy at
the Brillouin zone K point. However, decreasing
the number of layers leads to an increase in the
indirect bandgap.

By increasing the indirect transition energy, as the
MoS; becomes a monolayer, the material
experiences a change into a 2D semiconductor
with a direct bandgap. For monolayer MoS,, a
change in a semiconductor with a direct bandgap
results in Keiax= 0, and a jump in luminescence
that is solely limited by the defect-trapping rate
Kaefeet. Single-layer and few layers (two-layers,
four-layers, and six-layers) of MoSe on both
Si/Si0; and quartz wafers were fabricated by
microexfoliation techniques. The reflectivity
measurements across visible and near-infrared
(NIR) spectral ranges showed absorption peaks
due to direct excitonic transitions at the K point

(Fig. 4b inset).

The energy difference of the absorption peaks is
due to the spin-orbital splitting of the valence
band. Strong luminescence emissions can be
recorded at the Al and Bl direct excitonic
transitions. The PL that is observed in the
monolayer of MoS; is contrary to that of bulk
MoS; which miss showing this emission. In
addition to the broad peak in PL spectra of the
monolayer, two-layer, six-layer, and bulk MoS,,
there are three Raman modes: the first peak is
attributed to a MoS; Raman excitation with a 408
cm’!' Raman shift (Fig. 4d). The other peaks are
also the first and second-order Raman peaks
arisen by the silicon substrate. For MoS, few-
layers that local field effects are small, and the PL
and Raman intensities exhibit opposite layer
dependence. The Raman signal for monolayer
MoS, which possesses a small amount of the
material is the weakest, while PL is the strongest
whereas it owns a reduced amount of material. It
means that compared to the few-layers and bulk
MoS,, the luminescence quantum efficiency for
the MoS, monolayer is higher [142].

The changes in the lateral dimensions of the 2D
TMDs can also alter their band structure and
optical, and electronic properties. As the lateral
dimensions of a 2D TMD decrease, a sharp peak
in its PL spectra might appear which is broad
and blue-shifted. This effect is similar to
what is observed in metallic nanoparticles
and can be attributed to the spatial quantum
confinement effect that is exerted on the electron
clouds [136].

The tunable optical response over a wide range of
wavelengths (NIR to visible) can be obtained by
assembling vdWHs and the formation of
heterojunctions and homojunction with direct
bandgap layered compounds of III-VI groups.
The combination of different semiconductor
layers and through selecting the p- or n-type
doping of the constituent layers, different
potential profiles and band alignments can
be achieved. As a comparison between
homojunction and heterojunction  diodes,
homojunction diodes assembled by the layers
of p- or n-type InSe could show EL at energies
near the InSe bandgap energy (E,= 1.26 eV).
However, layers of n-type InSe and p-type GaSe
were applied in a heterojunction diode, and
the device could emit photons at lower
energies [143].


http://dx.doi.org/10.22068/ijmse.3019
https://conf.iust.ac.ir/ijmse/article-1-3019-en.html

[ Downloaded from conf.iust.ac.ir on 2025-11-08 ]

[ DOI: 10.22068/ijmse.3019 ]

Iranian Journal of Materials Science and Engineering, Vol. 20, Number 2, June 2023

I | 11 111

Energy

r T MK T

MoS, Raman d
@ 4000 N monolayer
0,4 g o —— bilayer
@ 2 s hexalayer
Q ‘= i Raman bulk
f — ui
g S -/
o
= s 20004
0,24 s = 2nd order
° o SiRaman
I &
s -
o
0,0 3
Q= e
C| 2%
677 nm ° 2
5% o
627 nm ‘q:, g
. = O
2000 E c
2c 14
o ©
e E
=]
= (T
ok
0+ 0
550 600 650
; ; ; Wavelength A (nm)
600 700 800

Wavelength A (nm)

Fig. 4. (a) Calculated band structures of MoS: in the forms of (I) bulk, (IT) quadrilayer, (III) bilayer, and (IV)
monolayer. The lowest energy transitions are depicted by solid arrows. The bulk form of MoS; shows an indirect
bandgap. The direct excitonic transitions happen at high energies (K point). By a decrease in the number of layers, the
indirect bandgap increases, and finally, when the MoS, becomes a monolayer, a semiconductor with a direct bandgap
is reached. (b) Reflection difference due to the MoS; ultrathin layer with a substrate of quartz, which shows to be
proportional to the absorption constant of MoS,. The peaks at 1.85 eV (670 nm) and 1.98 eV (627 nm) are attributed to

the Al and B1 direct excitonic transitions with the energy split from valence band spin-orbital coupling. The band
structure of the bulk MoS; is shown in the inset. (c) At the direct excitonic transition energies, strong PL in monolayer
MoS; can be detected in which such luminescence cannot be seen in the bulk MoS; with indirect bandgap. (d) Raman
and PL spectra of ultrathin samples with different layers of MoS,. For the MoS, monolayer, the Raman signal is
weak while the PL is strong. (e) The PL spectra normalized by Raman intensity for ultrathin MoS2 with different

numbers of Layers. Reproduced with permission from ref. [ 142] Copyright 2010 American Chemical Society.
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Applying strains on the vdWHs might be used as
a tool for tuning the bandgap structure. For
example, the band edge positions of the ZrS,
monolayer are not appropriate for water splitting,
since its CBM is lower than the reduction level by
0.14 eV, while the CBM of the hBN/ZrS; is 0.07
lower than the reduction level. It has been shown
that by applying biaxial strain (3%) to the
hBN/ZrS; heterostructure, the CBM becomes
0.25 eV more than the H,O reduction level [102].
Alloying the materials that have different
bandgaps is a technique for bandgap engineering
of bulk semiconductors [144]. For example, MoS,
and MoSe; are two of TMDs that without the need
of changing their structure to nanostructured,
functionalization, or applying a strong field to
bilayers, have a direct bandgap. Single layers of
MoSz1-xSea sheets with an arbitrary S/Se ratio
have been synthesized which makes it possible to
tune the direct bandgap between the bandgap
values of the MoSe; single layer and MoS; single
layer, continuously [82].

1.4. Development of Advanced Light-Emitting
Diodes Based on Materials with Van Der Waals
Heterostructures

The photodiodes which are based on the 2D
materials and van der Waals interactions could be
considered promising candidates for future
optoelectronic devices. The p-n heterojunctions
and  homojunctions are  conventionally
synthesized through epitaxial growth and
chemical doping, respectively [145]. The p—n
junctions in graphene does not show diode-like
rectification characteristics due to the Klein
tunneling effect. The graphene can be used for
photodetection, but due to its zero bandgap, it
cannot generate a sizable photovoltage, and
similarly, the graphene p-n junctions cannot also
create electrically driven light emission.
However, other 2D materials that have a bandgap
can be used for the production of p-n junctions
[146]. Through the application of 2D materials, p-
n heterojunctions by the aid of van der Waals
interactions without lattice mismatch can
be formed. A device consisting of black
phosphorus-MoS2 based on the van der Waals
heterojunction was constructed on a surface
acoustic wave platform. This device exhibited
photo responsivity of 2.17 A/W (at A= 582 nm),
which might be due to the piezoelectric potential
induced by the surface acoustic waves strain field

s B

[145].

Since the conduction and valence bands of
graphene meet at the Dirac points, graphene
is a zero-gap semiconductor. In traditional
semiconductors, by striking an electron at a
barrier with a height higher than the kinetic
energy of the electron, the wave function of the
electron becomes evanescent within the barrier.
Furthermore, the wave function of electrons
decays exponentially with distance into the
barrier. Therefore, a wider and taller barrier
results in more decay of the electron wave
function before reaching the other side. This
means in a higher and wider barrier, the
probability of electron quantum tunneling is
lower. However, if the particles are governed by
the Dirac equation, if the barrier height is higher,
the probability for transmission would be more. A
Dirac electron hitting a tall barrier turns into a
hole. Then the resulting hole will propagate
through the barrier. When the carrier is reached
the other side of the barrier it will turn back into
an electron. This phenomenon is called Klein
tunneling. In the case of graphene, the variation in
chirality leads to a variety in the transmission
probability that depends on the angle of incidence
to the barrier. In graphene, the Fermi level is
always within the valence or conduction bands.
However, the Fermi level in traditional
semiconductors, when pinned by impurity states,
often falls within the bandgap [147].

The creation of p-n diodes in TMDs is
challenging because of the difficulties in selective
doping into the n- or p-type semiconductors.
Vertical stacking of the n- and p-type monolayers
can create a sharp heterojunction p-n diode with
an atomically thin characteristic. Cheng et al.
applied the n-type MoS, few-layers and p-type
WSe, monolayer in assembling heterojunction
p-n diodes [148]. They showed that the
WSe»MoS: heterojunctions exhibit superior
current rectification characteristics with an
ideality factor of 1.2. A Si/SiO, (300 nm)
substrate was used to synthesize the triangular
domains of monolayer WSe,. For the production
of vertically stacked heterojunctions, the MoS,
flakes were exfoliated mechanically and then
transferred onto the synthetic WSe; domains. The
contact electrodes were synthesized with electron
beam evaporation and electron-beam lithography
(Fig. 5a and b). The ideal band diagram of the
heterojunction is illustrated in Fig. 5c. The
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built-in potential is supported by the depletion
layer, and outside the semiconductor is supposed
to be neutral. The EL is localized near the
electrodes since for EL, the forward bias exceeds
the p-n diode turn-on voltage, and the resistance
of the monolayer WSe; is considerable in the total
resistance. Consequently, the majority of the
voltage drop happens near the electrodes across
the heterojunction edge because of the significant
series resistance of the monolayer WSe,. There
are thresholds in the EL intensity for different
injection current spectra (Fig. 5d). An almost
linear increase in the EL intensity can be observed
by increasing the injection current. The thresholds
in the EL spectra might be due to the band
alignment of the heterojunction by applying
various values of the bias voltages. As a result of
different bandgap and band alignments between
the valence band and conduction band, the barrier
for hole transport is smaller than the barrier for
the transportation of electrons across the junction.
The bandgap in the few-layer MoS; is indirect
and hence, leads to a low rate of radiative
recombination and a low-intensity EL when the
charge transfer across the heterojunction is
dominated by the hole injection. If the bias across
the junctions is increased beyond the electron
injection threshold, the MoS, conduction band
shifts upper, and consequently, both the holes and
electrons can pass the heterojunction and are
injected into the n-type and p-type regions,
respectively (Fig. 5f). The rate of radiative
recombination in monolayer-WSe; with a direct
bandgap is higher than in bilayer-WSe, with an
indirect bandgap.

There have been some efforts for the realization
of solid-state single-photon emitters for different
applications. The single defect-bound excitons
have the potential for application in on-chip
quantum information as well as nanophotonics. A
new type of single-photon source is the single
defect that is localized in the WS, monolayer
[149-152]. This type of single-photon source can
be integrated with different optical components,
including waveguides [153-155] and crystal
cavities [156-158].

Clark et al. constructed an LED as a vertical
heterostructure which consisted of two exfoliated
sheets of graphene monolayers as semi-
transparent electrodes, two layers of exfoliated
BN (2-4 layers each), and a CVD-grown WSe;
monolayer at the center between the BN layers.

[159]. by applying a bias to the device, the Fermi
level rises above the sub-gap defect states.
Therefore, electrons (holes) can tunnel from the
negative (positive) electrode over the barrier of
BN to states in the WSe,, which can be accessed
by increasing the bias. The carriers that are
injected from the graphene contacts will remain
in the WSe; layer with the aid of the BN layers.
The carriers can form the excitons as a result of
Coulomb interactions. Recombination of the
formed excitons leads to EL from intrinsic and
defect-bound exciton states of WSe,. Narrow
emission lines in the EL spectrum of the
constructed device can be seen which is similar to
the PL that is derived from the realizing single-
photon emitters in WSe,. Schwarz et al. also
reported that by applying a vertical electric
field to a vdWH of graphene/ hBN/ WSe,/ hBN/
graphene, tuning by more than 1 meV of the
emission energy has been demonstrated by the
defect luminescence [160]. The energy of the
defect emitter in the device can be fine-tuned by
changing the bias. The quantum-confined Stark
effect can be confirmed.

In a MoS»/WSe:, heterojunction, the possible
band-to-band tunneling paths can be determined
by calculation of the band diagram of some
typical MoS,/WSe: heterojunctions with versatile
film thicknesses and charge densities. It was
concluded that the bandgap of the heterojunction
at the edge of the overlapped region of p-WSe»
and n-MoS; (horizontal direction) is smaller than
their bandgap in the overlapped region (out-of-
plane direction). However, the charge carriers in
such vdWHs in both vertical and horizontal
directions must tunnel through an extra effective
van der Waals barrier. This barrier is thinner than
the tunneling distance. Therefore, the main
crucial tunneling parameter would be the
tunneling barrier height defined by the effective
bandgap [161].

The application of the magnetic field has a
pronounced effect on the EL intensity of the light-
emitting vdWHs. In a study, a heterostructure
consisting of the successive layers of Si/ SiO»/
hBN/graphene/hBN/WSe,/hBN/graphene which
the WSe, monolayer is the active part was
constructed. The hBN spacers are two layers thick
and separate the WSe; layer from the electrodes,
which are graphene sheets. A lower EL threshold
voltage was seen compared to the corresponding
single-particle bandgap of the WSe, monolayer.
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Fig. 5. (a) A schematic illustration of the WSe»/MoS, heterojunction device. (b) cross-sectional view of the
vertical heterojunction, (¢) an ideal band diagram of the p-n diode (applying zero bias). (d) The EL intensity vs
injection current for monolayer- and bilayer-WSe,/MoS; heterojunction. (e) ideal band diagram of the
heterojunction applying small forward bias. Under small bias, the electrons cannot cross the junction, but the
holes can cross and inject into the n-type region. (f) ideal band diagram of the heterojunction applying large
forward bias, the conduction band of the MoS shifts upper and is higher than the conduction band of the WSe..
Reproduced with permission from ref. [ 148] Copyright 2014 American Chemical Society.

By application of a magnetic field, enhanced
magneto-oscillations in EL emission intensity as
a function of the applied magnetic field with a
direction perpendicular to the plane of the layer
can be observed [162].

The emission of TMDs can be enhanced by the
application of nano-cavity since this can result in
spectral and spatial confinement of the light [1].
The application of nano-cavity integrated TMDs
has resulted in strongly coupled exciton-
polaritons at room temperature [163, 164]. The
light-emitting device with a vdWH consisting of
graphene/hBN as the bottom, and top contacts and
WSe; monolayer as the active light emitter layer
has been assembled vertically. It was observed
when a photonic crystal cavity is integrated on the
top of the assembled heterostructure, the local EL
enhances more than 4 times. When voltage pulses
are applied, direct modulation of the EL at a speed
of approximately 1MHz is demonstrated. The
cavity-integrated vdWHs could be promising as a
nanoscale optoelectronic platform [1].

The metal-insulator-semiconductor diodes based
on the vdWHs are a potential platform for
electrically driven excitonic devices. As an
example, Wang et al. could assemble the planar

o G

vdWH LED by a few layers of graphene, hBN,
and WS, monolayer [165]. The LED showed a
high carrier-to-exciton conversion efficiency. The
realized devices showed excitonic EL with a very
low threshold current density of a few pA-um™.
The light emission is due to the injection of hot
minority carriers (holes) to n-doped WS by
Fowler-Nordheim tunneling, and hBN can
conduct the hole transport and be used as an
electron-blocking layer. The WS, layer is
responsible for light emission as well as a layer
for efficient electron transfer.

The combination of 2D materials with silicon-
based fabrication processes is promising for
implementing 2D semiconductors in standard
semiconductor  fabrication processes. For
example, an LED, based on the wvertical
heterojunctions with p-type silicon and n-type
MoS, monolayer was realized. The diode
showing rectification and light emission from the
entire surface of the heterojunction was
assembled with interface engineering. The device
shows a direct bandgap [166].

Be utilized by the aid of stacked monolayers of
the 2D materials. The single-photon sources in
layered materials have several advantages
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including the ability to work at the limits of
monolayers; low stray capacitance that makes the
possibility of reaching high-speed operation;
compatibility in fabrication with silicon platforms
which results in their easy incorporation into
optoelectronic  systems; miniaturization and
potential for fabrication of low-power devices;
and embedding into photonic structures with an
improved light-matter interaction. It has been
reported that a 2D diode for quantum light from
single-photon emitting sites in WSe, and WS,
monolayers has been designed. The applied layers
were a graphene monolayer, a thin sheet of hBN
(2-6 atomic layers), and a monolayer or bilayer of
TMD (WSe; or WS>) on the top, which all these
successive layers lie on a substrate of Si/SiO». The
configuration of the layers and the optical image
of this device are illustrated in Fig. 6a
and 6b, respectively. The vertically stacked
heterojunction allows EL from the whole area of
the device. The vertical junction provides the
designing of the devices which are only limited
by the flake size and can be functional within an
area of several microns squared, while the
thickness is limited to a few atomic layers. The
EL is generated by applying a bias between the
graphene monolayer and TMD. The electrons are
injected into the graphene monolayer tunnel
through the barrier of hBN and recombination
occurs at the TMDs, which serves as the hosting
of single-photon sources. The band diagrams of
the assembled layers are shown in Fig. 6¢c. When
the bias between the graphene monolayer and
TMD is zero, the system Fermi energy (EF) is
constant across the heterojunction, and a net
charge flow between the stacked layers is
prevented (Fig. 6c(i)). The closer EF to the
valence band is because of using a naturally
p-doped crystal for exfoliated WSe». A negative
bias raises the graphene monolayer EF above the
CBM of the grounded WSe;. Therefore, the
electrons tunnel from the graphene monolayer to
the WSe; monolayer. Radiative recombination of
the tunneled electrons and the holes in the WSe;
area leads to photoemission (Fig. 6¢(ii) and (iii)).
The graphene monolayer Dirac cone is raised
through the field effect as a result of the
accumulation of the negative charges in the layer,
while the TMD band appears to be lowered by the
same effect. The differences between the
operation of LED and quantum LED (QLED) are
illustrated in Fig. 6¢(ii) and (iii), respectively. In

QLED, single electrons which are tunneled into
the energy levels of the quantum dots recombine
with single holes. In LED electrons tunnel
through and recombine with holes from the band
edges [167].

The quantum wells with a precision of one atomic
plane can be introduced into vdWHs for specific
devices. The quantum wells in combination with
tunnel barriers and other structures can be used
for band-structure engineering by combining
different 2D atomic layers. The lifetime of the
quasiparticles can be increased by the utilization
of suitable barriers and result in electron and
hole recombination and photon emission. The
quantum efficiency of the advanced 2D LEDs can
be improved by the application of multiple
quantum wells [84].

The MoS; monolayers as the active light-emitting
material which is sandwiched between hBN as
tunnel barriers, and graphene electrodes, were
assembled to realize vdWH of light-emitting
quantum wells. The constructed heterostructure
shows enhanced performance at room temperature.
The external efficiency of 5% is promising for the
development of optoelectronic components with
flexibility. Creating multiple quantum well
devices increases efficiency [168]. Withers et al.
fabricated LEDs by stacking insulating hBN,
metallic graphene, and various semiconducting
2D monolayers [84]. The graphene was used as
the conductive layer. The hBN was chosen and
applied as a tunnel barrier, and TMDs as the
quantum wells. The electrons and holes are
injected from the graphene electrodes into the
TMDs layer. The quasiparticles with a long
lifetime in the quantum wells result in the
recombination of holes and electrons which
consequently, emit a photon. By choosing and
stacking different TMD monolayers (WS, MoS,,
and WSey), the emission over a wide range of
frequencies could be tuned. The quantum
efficiency can be elevated via the application
of multiple quantum wells. Fig. 7 shows
heterostructure devices constructed with single-
quantum-well and multiple-quantum-wells and
shows their corresponding STEM images and
band diagrams.

1.5. Challenges and Perspectives

A nanoscale LED is an essential component for
future integrated nanophotonics, displays, and on-
chip quantum optoelectronics. The nanoscale
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LEDs can be produced by the stacking of 2D
materials in vdWHs. This review aimed to study
the possibility of using vdWHs in fabricating
LEDs for future optoelectronics devices. Both
in-plane and vertical heterostructures with
atomically thin 2D layers have been developed in
recent years. The vdWHs can construct LEDs
with different optical characteristics due to the
varying work functions, electron affinities, and
band gaps that can be obtained by stacking
different 2D layers. The electron orbitals of the
layers in the vdWHs extend to each other which
will influence their electronic band structure. The
development of the vdWHs-based nanoscale
LEDs has encountered some challenges in being
applicable in ultrathin devices. The precise

(a)

(c)

() 5.6 nen TMD

v=0 L | =

(ii) ™

control of the stacking process should be
resolved. The transfer technology and large-scale
production of the heterostructures should be
developed. Crystal defects alter the electronic
properties of the 2D layers which need to be
considered in large-scale production for precise
bandgap tuning. The successful recent laboratory-
fabricated LEDs by utilization of vdWHs and
possible bandgap tuning beyond the limitations
which are exerted by the chemical composition of
the semiconductors show that vdWHs-based
LEDs are effective in miniaturization of the
optoelectronics and on-chip devices. The
application of vdWHs-based LEDs can also result
in the fabrication of displays with higher
resolution and lower power consumption.

s V<0 \] e

LED

Fig. 6. (a) a schematic of the side view of LED, (b) optical image of the designed QLED. (c) band diagram of
the heterostructure: i) zero applied bias, applying a negative bias leads to tunneling of the electrons from the
graphene monolayer into the TMD. Radiative recombination occurs ii) in the band edges of the TMD monolayer
(LED), or iii) in the TMD-QDs (QLED). Reproduced with permission from ref. [167] Copyright 2018 Springer
Nature Switzerland AG.
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a b 4 S Si0, Gr, Mo, Gr.

Flg 7. Schematic of the hBN/GrB/2hBN/WS,/2hBN/GrT/hBN heterostrucure. (b) Bright-field STEM image of
the cross-section of the hBN/GrB/2hBN/WS,/2hBN/GrT/hBN single-quantum-well heterostructure (GrB:
bottom graphene electrode, GrT: top graphene, hBN: hexagonal boron nitride, 2hBN= bilayer hBN), scale bar=5
nm. (¢) Schematic of the hBN/GrB/2hBN/MoS,/2hBN/MoS,/2hBN/MoS,/2hBN/MoS,/2hBN/GrT/hBN
heterostrucure and (d) its STEM image, scale bar= 5 nm. (e) Optical image of an operational device (hBN/ GrB/
3hBN/MoS,/3hBN/GrT/hBN). The heterostructure area is depicted with a dashed curve, scale bar= 10 um. (f)
Optical image of the same device that shows electroluminescence. Vb= 2.5 V, T= 300 K. 2hBN, and 3hBN
represent the bi- and trilayer hBN, respectively. (g) A schematic of the Si/ SiO»/ hBN/ GrB/ 3hBN/ MoS,/ 3hBN/
GrT/hBN heterostructure. (h—j) Band diagrams of the heterostructure are shown in (g) in the case of zero applied
bias (h), in the case of intermediate applied bias (i), and the case of high bias (j). Reproduced with permission
from ref. [84] Copyright 2015 Macmillan Publishers Limited.

& &

13



http://dx.doi.org/10.22068/ijmse.3019
https://conf.iust.ac.ir/ijmse/article-1-3019-en.html

[ Downloaded from conf.iust.ac.ir on 2025-11-08 ]

[ DOI: 10.22068/ijmse.3019 ]

Mohammad Jafar Molaei

2. CONCLUSIONS

The vdWHs that are constructed by stacking 2D
layers have found applications in optoelectronic
and electronic devices, especially nanoscale
LEDs. The ultrathin LEDs with generation the
emission in the range of visible to near-infrared
can be fabricated due to the possibility of bandgap
tuning in vdWHs for advanced LEDs. Several
factors can tune the bandgap of 2D vdWHs
including choosing different 2D semiconductor
layers in the heterostructure, applying stress, and
changing lateral dimensions. The quantum wells
with a precision of one atomic plane can be
introduced into vdWHs and single-photon
sources can be utilized in fabricating on-chip
LEDs. The vdWHs-based LEDs are effective
structures in miniaturization of the optoelectronic
devices and the production of high-resolution
displays.
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